The fight against HIV is one that has lasted over two decades. In 2013, a team of scientists led by Hannah Gay successfully cured a baby of HIV and marked the beginning of hope over a virus that threatens the existence of a large portion of the human race.
Now, new discovering on the fight against HIV show possibility of eradicating the virus entirely. Scientists have uncovered a way of triggering a powerful antibody from the human immune system that have the capacity to block HIV infection of cells by targeting V1V2; a site on the Virus.
The belief is that if a relevant vaccine could elicit potent antibodies to a target a specific site of the V1V2 region that remains stable throughout the virus’s mutation, then the vaccine could protect people from getting HIV.
The study was led by scientists from the National Institute of Allergy and Infectious Diseases (NIAID), part of the U.S. National Institutes of Health; Columbia University; the Centre for the AIDS Programme of Research in South Africa (CAPRISA); and the National Institute for Communicable Diseases, Johannesburg.
They began by identifying an HIV-infected volunteer in the CAPRISA cohort who naturally developed V1V2-directed HIV neutralizing antibodies, named CAP256-VRC26, after several months of infection. Using techniques similar to those employed in an earlier study of HIV-antibody co-evolution, the researchers analyzed blood samples donated by the volunteer between 15 weeks and 4 years after becoming infected. This enabled the scientists to determine the genetic make-up of the original form of the antibody; to identify and define the structures of a number of the intermediate forms taken as the antibody mutated toward its fullest breadth and potency; and to describe the interplay between virus and antibody that fostered the maturation of CAP256-VRC26 to its final, most powerful HIV-fighting form.
Notably, the study revealed that after relatively few mutations, even the early intermediates of CAP256-VRC26 can neutralize a significant proportion of known HIV strains. This improves the chances that a V1V2-directed HIV vaccine developed based on the new findings would be effective, according to the scientists, who have begun work on a set of vaccine components designed to elicit V1V2 neutralizing antibodies and guide their maturation.
Now, new discovering on the fight against HIV show possibility of eradicating the virus entirely. Scientists have uncovered a way of triggering a powerful antibody from the human immune system that have the capacity to block HIV infection of cells by targeting V1V2; a site on the Virus.
The belief is that if a relevant vaccine could elicit potent antibodies to a target a specific site of the V1V2 region that remains stable throughout the virus’s mutation, then the vaccine could protect people from getting HIV.
The study was led by scientists from the National Institute of Allergy and Infectious Diseases (NIAID), part of the U.S. National Institutes of Health; Columbia University; the Centre for the AIDS Programme of Research in South Africa (CAPRISA); and the National Institute for Communicable Diseases, Johannesburg.
They began by identifying an HIV-infected volunteer in the CAPRISA cohort who naturally developed V1V2-directed HIV neutralizing antibodies, named CAP256-VRC26, after several months of infection. Using techniques similar to those employed in an earlier study of HIV-antibody co-evolution, the researchers analyzed blood samples donated by the volunteer between 15 weeks and 4 years after becoming infected. This enabled the scientists to determine the genetic make-up of the original form of the antibody; to identify and define the structures of a number of the intermediate forms taken as the antibody mutated toward its fullest breadth and potency; and to describe the interplay between virus and antibody that fostered the maturation of CAP256-VRC26 to its final, most powerful HIV-fighting form.
Notably, the study revealed that after relatively few mutations, even the early intermediates of CAP256-VRC26 can neutralize a significant proportion of known HIV strains. This improves the chances that a V1V2-directed HIV vaccine developed based on the new findings would be effective, according to the scientists, who have begun work on a set of vaccine components designed to elicit V1V2 neutralizing antibodies and guide their maturation.
No comments:
Post a Comment
WE LOVE COMMENTS, POST A COMMENT